p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23⋊1M4(2), C23⋊C8⋊13C2, (C2×C4)⋊1M4(2), (C2×C42).17C4, C24.23(C2×C4), (C23×C4).17C4, C4.27(C23⋊C4), (C22×D4).20C4, (C22×C4).200D4, C24.4C4⋊16C2, C22⋊C8.121C22, C23.40(C22⋊C4), C2.9(C24.4C4), (C23×C4).199C22, C23.166(C22×C4), (C22×C4).429C23, C22.18(C2×M4(2)), C22.M4(2)⋊14C2, C2.7(M4(2).8C22), (C2×C4×D4).3C2, C2.8(C2×C23⋊C4), (C2×C4).1126(C2×D4), (C2×C22⋊C4).18C4, (C22×C4).44(C2×C4), (C2×C4⋊C4).737C22, (C2×C4).350(C22⋊C4), C22.147(C2×C22⋊C4), (C2×C22⋊C4).404C22, SmallGroup(128,197)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23⋊M4(2)
G = < a,b,c,d,e | a2=b2=c2=d8=e2=1, dad-1=ab=ba, eae=ac=ca, dbd-1=bc=cb, be=eb, cd=dc, ce=ec, ede=d5 >
Subgroups: 348 in 158 conjugacy classes, 50 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C2×D4, C24, C22⋊C8, C22⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C2×M4(2), C23×C4, C22×D4, C23⋊C8, C22.M4(2), C24.4C4, C2×C4×D4, C23⋊M4(2)
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, M4(2), C22×C4, C2×D4, C23⋊C4, C2×C22⋊C4, C2×M4(2), C24.4C4, C2×C23⋊C4, M4(2).8C22, C23⋊M4(2)
(1 5)(2 6)(3 29)(4 30)(7 25)(8 26)(9 19)(10 20)(11 15)(12 16)(13 23)(14 24)(17 21)(18 22)(27 31)(28 32)
(2 32)(4 26)(6 28)(8 30)(10 24)(12 18)(14 20)(16 22)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 13)(2 10)(3 15)(4 12)(5 9)(6 14)(7 11)(8 16)(17 29)(18 26)(19 31)(20 28)(21 25)(22 30)(23 27)(24 32)
G:=sub<Sym(32)| (1,5)(2,6)(3,29)(4,30)(7,25)(8,26)(9,19)(10,20)(11,15)(12,16)(13,23)(14,24)(17,21)(18,22)(27,31)(28,32), (2,32)(4,26)(6,28)(8,30)(10,24)(12,18)(14,20)(16,22), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,13)(2,10)(3,15)(4,12)(5,9)(6,14)(7,11)(8,16)(17,29)(18,26)(19,31)(20,28)(21,25)(22,30)(23,27)(24,32)>;
G:=Group( (1,5)(2,6)(3,29)(4,30)(7,25)(8,26)(9,19)(10,20)(11,15)(12,16)(13,23)(14,24)(17,21)(18,22)(27,31)(28,32), (2,32)(4,26)(6,28)(8,30)(10,24)(12,18)(14,20)(16,22), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,13)(2,10)(3,15)(4,12)(5,9)(6,14)(7,11)(8,16)(17,29)(18,26)(19,31)(20,28)(21,25)(22,30)(23,27)(24,32) );
G=PermutationGroup([[(1,5),(2,6),(3,29),(4,30),(7,25),(8,26),(9,19),(10,20),(11,15),(12,16),(13,23),(14,24),(17,21),(18,22),(27,31),(28,32)], [(2,32),(4,26),(6,28),(8,30),(10,24),(12,18),(14,20),(16,22)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,13),(2,10),(3,15),(4,12),(5,9),(6,14),(7,11),(8,16),(17,29),(18,26),(19,31),(20,28),(21,25),(22,30),(23,27),(24,32)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | ··· | 4H | 4I | ··· | 4N | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | D4 | M4(2) | M4(2) | C23⋊C4 | M4(2).8C22 |
kernel | C23⋊M4(2) | C23⋊C8 | C22.M4(2) | C24.4C4 | C2×C4×D4 | C2×C42 | C2×C22⋊C4 | C23×C4 | C22×D4 | C22×C4 | C2×C4 | C23 | C4 | C2 |
# reps | 1 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 |
Matrix representation of C23⋊M4(2) ►in GL6(𝔽17)
16 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 11 | 1 | 0 |
0 | 0 | 8 | 0 | 0 | 16 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 6 | 16 | 0 |
0 | 0 | 8 | 10 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 12 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 7 | 0 | 2 |
0 | 0 | 5 | 11 | 2 | 0 |
0 | 0 | 10 | 7 | 6 | 12 |
0 | 0 | 10 | 7 | 10 | 8 |
16 | 2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 16 |
0 | 0 | 1 | 16 | 16 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,8,0,0,0,16,11,0,0,0,0,0,1,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,12,8,0,0,0,1,6,10,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,1,0,0,0,0,12,16,0,0,0,0,0,0,9,5,10,10,0,0,7,11,7,7,0,0,0,2,6,10,0,0,2,0,12,8],[16,0,0,0,0,0,2,1,0,0,0,0,0,0,0,16,1,1,0,0,16,0,16,16,0,0,0,0,0,16,0,0,0,0,16,0] >;
C23⋊M4(2) in GAP, Magma, Sage, TeX
C_2^3\rtimes M_4(2)
% in TeX
G:=Group("C2^3:M4(2)");
// GroupNames label
G:=SmallGroup(128,197);
// by ID
G=gap.SmallGroup(128,197);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,112,141,1430,352,1123,851,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^8=e^2=1,d*a*d^-1=a*b=b*a,e*a*e=a*c=c*a,d*b*d^-1=b*c=c*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^5>;
// generators/relations